Stress redistribution in individual ultrathin strained silicon nanowires: a high-resolution polarized Raman study
نویسندگان
چکیده
منابع مشابه
High pressure Raman scattering of silicon nanowires.
We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with ∼ 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grüneisen parameters. We detect an increase of Raman linewidth at ∼ 4 G...
متن کاملRaman Spectrum of silicon nanowires
We measure the effects of phonon confinement on the Raman spectra of silicon nanowires (SiNWs). We show how previous reports of phonon confinement in SiNWs and nanostructures are actually inconsistent with phonon confinement, but are due to the intense local heating caused by the laser power used for Raman measurements. This is peculiar to nanostructures, and would require orders of magnitude h...
متن کاملRaman spectroscopy of silicon nanowires
We measure the effects of phonon confinement on the Raman spectra of silicon nanowires. We show how previous spectra were inconsistent with phonon confinement, but were due to intense local heating caused by the laser. This is peculiar to nanostructures, and would require orders of magnitude more power in bulk Si. By working at very low laser powers, we identify the contribution of pure confine...
متن کاملTailoring the crystal structure of individual silicon nanowires by polarized laser annealing.
We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth ...
متن کاملThermal conductivity of individual silicon nanowires
The thermal conductivities of individual single crystalline intrinsic Si nanowires with diameters of 22, 37, 56, and 115 nm were measured using a microfabricated suspended device over a temperature range of 20–320 K. Although the nanowires had well-defined crystalline order, the thermal conductivity observed was more than two orders of magnitude lower than the bulk value. The strong diameter de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2013
ISSN: 1367-2630
DOI: 10.1088/1367-2630/15/5/053042